Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
BMJ Open ; 14(1): e080410, 2024 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-38216198

RESUMEN

INTRODUCTION: Acute heart failure (HF) is a major cause of unplanned hospitalisation characterised by excess body water. A restriction in oral fluid intake is commonly imposed on patients as an adjunct to pharmacological therapy with loop diuretics, but there is a lack of evidence from traditional randomised controlled trials (RCTs) to support the safety and effectiveness of this intervention in the acute setting.This study aims to explore the feasibility of using computer alerts within the electronic health record (EHR) system to invite clinical care teams to enrol patients into a pragmatic RCT at the time of clinical decision-making. It will additionally assess the effectiveness of using an alert to help address the clinical research question of whether oral fluid restriction is a safe and effective adjunct to pharmacological therapy for patients admitted with fluid overload. METHODS AND ANALYSIS: THIRST (Randomised Controlled Trial within the electronic Health record of an Interruptive alert displaying a fluid Restriction Suggestion in patients with the treatable Trait of congestion) Alert is a single-centre, parallel-group, open-label pragmatic RCT embedded in the EHR system that will be conducted as a feasibility study at an National Health Service (NHS) hospital in London. The clinical care team will be invited to enrol suitable patients in the study using a point-of-care alert with a target sample size of 50 patients. Enrolled patients will then be randomised to either restricted or unrestricted oral fluid intake. Two primary outcomes will be explored (1) the proportion of eligible patients enrolled in the study and (2) the mean difference in oral fluid intake between randomised groups. A series of secondary outcomes are specified to evaluate the effectiveness of the alert, adherence to the randomised treatment allocation and the quality of data generated from routine care, relevant to the outcomes of interest. ETHICS AND DISSEMINATION: This study was approved by Riverside Research Ethics Committee (Ref: 22/LO/0889) and will be published on completion. TRIAL REGISTRATION NUMBER: NCT05869656.


Asunto(s)
Furosemida , Insuficiencia Cardíaca , Humanos , Estudios de Factibilidad , Furosemida/uso terapéutico , Insuficiencia Cardíaca/tratamiento farmacológico , Hospitalización , Ensayos Clínicos Controlados Aleatorios como Asunto/métodos , Tamaño de la Muestra , Ensayos Clínicos Pragmáticos como Asunto/métodos
3.
EBioMedicine ; 93: 104655, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37327673

RESUMEN

BACKGROUND: HFrEF is a heterogenous condition with high mortality. We used serial assessments of 4210 circulating proteins to identify distinct novel protein-based HFrEF subphenotypes and to investigate underlying dynamic biological mechanisms. Herewith we aimed to gain pathophysiological insights and fuel opportunities for personalised treatment. METHODS: In 382 patients, we performed trimonthly blood sampling during a median follow-up of 2.1 [IQR:1.1-2.6] years. We selected all baseline samples and two samples closest to the primary endpoint (PEP; composite of cardiovascular mortality, HF hospitalization, LVAD implantation, and heart transplantation) or censoring, and applied an aptamer-based multiplex proteomic approach. Using unsupervised machine learning methods, we derived clusters from 4210 repeatedly measured proteomic biomarkers. Sets of proteins that drove cluster allocation were analysed via an enrichment analysis. Differences in clinical characteristics and PEP occurrence were evaluated. FINDINGS: We identified four subphenotypes with different protein profiles, prognosis and clinical characteristics, including age (median [IQR] for subphenotypes 1-4, respectively:70 [64, 76], 68 [60, 79], 57 [47, 65], 59 [56, 66]years), EF (30 [26, 36], 26 [20, 38], 26 [22, 32], 33 [28, 37]%), and chronic renal failure (45%, 65%, 36%, 37%). Subphenotype allocation was driven by subsets of proteins associated with various biological functions, such as oxidative stress, inflammation and extracellular matrix organisation. Clinical characteristics of the subphenotypes were aligned with these associations. Subphenotypes 2 and 3 had the worst prognosis compared to subphenotype 1 (adjHR (95%CI):3.43 (1.76-6.69), and 2.88 (1.37-6.03), respectively). INTERPRETATION: Four circulating-protein based subphenotypes are present in HFrEF, which are driven by varying combinations of protein subsets, and have different clinical characteristics and prognosis. CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT01851538https://clinicaltrials.gov/ct2/show/NCT01851538. FUNDING: EU/EFPIA IMI2JU BigData@Heart grant n°116074, Jaap Schouten Foundation and Noordwest Academie.


Asunto(s)
Insuficiencia Cardíaca , Humanos , Lactante , Preescolar , Insuficiencia Cardíaca/diagnóstico , Insuficiencia Cardíaca/terapia , Volumen Sistólico , Proteómica , Biomarcadores , Pronóstico
4.
J Am Med Inform Assoc ; 30(2): 222-232, 2023 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-36083213

RESUMEN

OBJECTIVE: Patient phenotype definitions based on terminologies are required for the computational use of electronic health records. Within UK primary care research databases, such definitions have typically been represented as flat lists of Read terms, but Systematized Nomenclature of Medicine-Clinical Terms (SNOMED CT) (a widely employed international reference terminology) enables the use of relationships between concepts, which could facilitate the phenotyping process. We implemented SNOMED CT-based phenotyping approaches and investigated their performance in the CPRD Aurum primary care database. MATERIALS AND METHODS: We developed SNOMED CT phenotype definitions for 3 exemplar diseases: diabetes mellitus, asthma, and heart failure, using 3 methods: "primary" (primary concept and its descendants), "extended" (primary concept, descendants, and additional relations), and "value set" (based on text searches of term descriptions). We also derived SNOMED CT codelists in a semiautomated manner for 276 disease phenotypes used in a study of health across the lifecourse. Cohorts selected using each codelist were compared to "gold standard" manually curated Read codelists in a sample of 500 000 patients from CPRD Aurum. RESULTS: SNOMED CT codelists selected a similar set of patients to Read, with F1 scores exceeding 0.93, and age and sex distributions were similar. The "value set" and "extended" codelists had slightly greater recall but lower precision than "primary" codelists. We were able to represent 257 of the 276 phenotypes by a single concept hierarchy, and for 135 phenotypes, the F1 score was greater than 0.9. CONCLUSIONS: SNOMED CT provides an efficient way to define disease phenotypes, resulting in similar patient populations to manually curated codelists.


Asunto(s)
Asma , Systematized Nomenclature of Medicine , Humanos , Algoritmos , Registros Electrónicos de Salud , Bases de Datos Factuales
6.
Lancet Digit Health ; 4(10): e757-e764, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36050271

RESUMEN

Big data is important to new developments in global clinical science that aim to improve the lives of patients. Technological advances have led to the regular use of structured electronic health-care records with the potential to address key deficits in clinical evidence that could improve patient care. The COVID-19 pandemic has shown this potential in big data and related analytics but has also revealed important limitations. Data verification, data validation, data privacy, and a mandate from the public to conduct research are important challenges to effective use of routine health-care data. The European Society of Cardiology and the BigData@Heart consortium have brought together a range of international stakeholders, including representation from patients, clinicians, scientists, regulators, journal editors, and industry members. In this Review, we propose the CODE-EHR minimum standards framework to be used by researchers and clinicians to improve the design of studies and enhance transparency of study methods. The CODE-EHR framework aims to develop robust and effective utilisation of health-care data for research purposes.


Asunto(s)
COVID-19 , Pandemias , Macrodatos , Registros Electrónicos de Salud , Electrónica , Humanos
7.
Development ; 149(18)2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-36134690

RESUMEN

Heart regeneration requires multiple cell types to enable cardiomyocyte (CM) proliferation. How these cells interact to create growth niches is unclear. Here, we profile proliferation kinetics of cardiac endothelial cells (CECs) and CMs in the neonatal mouse heart and find that they are spatiotemporally coupled. We show that coupled myovascular expansion during cardiac growth or regeneration is dependent upon VEGF-VEGFR2 signaling, as genetic deletion of Vegfr2 from CECs or inhibition of VEGFA abrogates both CEC and CM proliferation. Repair of cryoinjury displays poor spatial coupling of CEC and CM proliferation. Boosting CEC density after cryoinjury with virus encoding Vegfa enhances regeneration. Using Mendelian randomization, we demonstrate that circulating VEGFA levels are positively linked with human myocardial mass, suggesting that Vegfa can stimulate human cardiac growth. Our work demonstrates the importance of coupled CEC and CM expansion and reveals a myovascular niche that may be therapeutically targeted for heart regeneration.


Asunto(s)
Células Endoteliales , Factor A de Crecimiento Endotelial Vascular , Animales , Proliferación Celular , Células Endoteliales/fisiología , Corazón/fisiología , Humanos , Recién Nacido , Ratones , Miocitos Cardíacos/metabolismo , Transducción de Señal , Factor A de Crecimiento Endotelial Vascular/metabolismo
8.
Nat Commun ; 13(1): 4664, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35945198

RESUMEN

Individuals with South Asian ancestry have a higher risk of heart disease than other groups but have been largely excluded from genetic research. Using data from 22,000 British Pakistani and Bangladeshi individuals with linked electronic health records from the Genes & Health cohort, we conducted genome-wide association studies of coronary artery disease and its key risk factors. Using power-adjusted transferability ratios, we found evidence for transferability for the majority of cardiometabolic loci powered to replicate. The performance of polygenic scores was high for lipids and blood pressure, but lower for BMI and coronary artery disease. Adding a polygenic score for coronary artery disease to clinical risk factors showed significant improvement in reclassification. In Mendelian randomisation using transferable loci as instruments, our findings were consistent with results in European-ancestry individuals. Taken together, trait-specific transferability of trait loci between populations is an important consideration with implications for risk prediction and causal inference.


Asunto(s)
Enfermedad de la Arteria Coronaria , Estudio de Asociación del Genoma Completo , Pueblo Asiatico/genética , Enfermedad de la Arteria Coronaria/epidemiología , Enfermedad de la Arteria Coronaria/genética , Sitios Genéticos , Humanos , Pakistán , Polimorfismo de Nucleótido Simple
9.
Hum Mol Genet ; 31(23): 4034-4054, 2022 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-35796550

RESUMEN

Despite early interest, the evidence linking fatty acids to cardiovascular diseases (CVDs) remains controversial. We used Mendelian randomization to explore the involvement of polyunsaturated (PUFA) and monounsaturated (MUFA) fatty acids biosynthesis in the etiology of several CVD endpoints in up to 1 153 768 European (maximum 123 668 cases) and 212 453 East Asian (maximum 29 319 cases) ancestry individuals. As instruments, we selected single nucleotide polymorphisms mapping to genes with well-known roles in PUFA (i.e. FADS1/2 and ELOVL2) and MUFA (i.e. SCD) biosynthesis. Our findings suggest that higher PUFA biosynthesis rate (proxied by rs174576 near FADS1/2) is related to higher odds of multiple CVDs, particularly ischemic stroke, peripheral artery disease and venous thromboembolism, whereas higher MUFA biosynthesis rate (proxied by rs603424 near SCD) is related to lower odds of coronary artery disease among Europeans. Results were unclear for East Asians as most effect estimates were imprecise. By triangulating multiple approaches (i.e. uni-/multi-variable Mendelian randomization, a phenome-wide scan, genetic colocalization and within-sibling analyses), our results are compatible with higher low-density lipoprotein (LDL) cholesterol (and possibly glucose) being a downstream effect of higher PUFA biosynthesis rate. Our findings indicate that PUFA and MUFA biosynthesis are involved in the etiology of CVDs and suggest LDL cholesterol as a potential mediating trait between PUFA biosynthesis and CVDs risk.


Asunto(s)
Enfermedades Cardiovasculares , Humanos , Enfermedades Cardiovasculares/genética , Análisis de la Aleatorización Mendeliana , Ácidos Grasos/genética , Pueblo Asiatico/genética , Polimorfismo de Nucleótido Simple/genética
10.
PLoS Med ; 19(5): e1003981, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35587468

RESUMEN

BACKGROUND: Type 2 diabetes (T2D) is highly prevalent in British South Asians, yet they are underrepresented in research. Genes & Health (G&H) is a large, population study of British Pakistanis and Bangladeshis (BPB) comprising genomic and routine health data. We assessed the extent to which genetic risk for T2D is shared between BPB and European populations (EUR). We then investigated whether the integration of a polygenic risk score (PRS) for T2D with an existing risk tool (QDiabetes) could improve prediction of incident disease and the characterisation of disease subtypes. METHODS AND FINDINGS: In this observational cohort study, we assessed whether common genetic loci associated with T2D in EUR individuals were replicated in 22,490 BPB individuals in G&H. We replicated fewer loci in G&H (n = 76/338, 22%) than would be expected given power if all EUR-ascertained loci were transferable (n = 101, 30%; p = 0.001). Of the 27 transferable loci that were powered to interrogate this, only 9 showed evidence of shared causal variants. We constructed a T2D PRS and combined it with a clinical risk instrument (QDiabetes) in a novel, integrated risk tool (IRT) to assess risk of incident diabetes. To assess model performance, we compared categorical net reclassification index (NRI) versus QDiabetes alone. In 13,648 patients free from T2D followed up for 10 years, NRI was 3.2% for IRT versus QDiabetes (95% confidence interval (CI): 2.0% to 4.4%). IRT performed best in reclassification of individuals aged less than 40 years deemed low risk by QDiabetes alone (NRI 5.6%, 95% CI 3.6% to 7.6%), who tended to be free from comorbidities and slim. After adjustment for QDiabetes score, PRS was independently associated with progression to T2D after gestational diabetes (hazard ratio (HR) per SD of PRS 1.23, 95% CI 1.05 to 1.42, p = 0.028). Using cluster analysis of clinical features at diabetes diagnosis, we replicated previously reported disease subgroups, including Mild Age-Related, Mild Obesity-related, and Insulin-Resistant Diabetes, and showed that PRS distribution differs between subgroups (p = 0.002). Integrating PRS in this cluster analysis revealed a Probable Severe Insulin Deficient Diabetes (pSIDD) subgroup, despite the absence of clinical measures of insulin secretion or resistance. We also observed differences in rates of progression to micro- and macrovascular complications between subgroups after adjustment for confounders. Study limitations include the absence of an external replication cohort and the potential biases arising from missing or incorrect routine health data. CONCLUSIONS: Our analysis of the transferability of T2D loci between EUR and BPB indicates the need for larger, multiancestry studies to better characterise the genetic contribution to disease and its varied aetiology. We show that a T2D PRS optimised for this high-risk BPB population has potential clinical application in BPB, improving the identification of T2D risk (especially in the young) on top of an established clinical risk algorithm and aiding identification of subgroups at diagnosis, which may help future efforts to stratify care and treatment of the disease.


Asunto(s)
Diabetes Mellitus Tipo 2 , Pueblo Asiatico , Estudios de Cohortes , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/epidemiología , Diabetes Mellitus Tipo 2/genética , Femenino , Humanos , Insulina , Pakistán/epidemiología , Factores de Riesgo
11.
Nat Cardiovasc Res ; 1(4): 361-371, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35479509

RESUMEN

Diastole is the sequence of physiological events that occur in the heart during ventricular filling and principally depends on myocardial relaxation and chamber stiffness. Abnormal diastolic function is related to many cardiovascular disease processes and is predictive of health outcomes, but its genetic architecture is largely unknown. Here, we use machine learning cardiac motion analysis to measure diastolic functional traits in 39,559 participants of the UK Biobank and perform a genome-wide association study. We identified 9 significant, independent loci near genes that are associated with maintaining sarcomeric function under biomechanical stress and genes implicated in the development of cardiomyopathy. Age, sex and diabetes were independent predictors of diastolic function and we found a causal relationship between genetically-determined ventricular stiffness and incident heart failure. Our results provide insights into the genetic and environmental factors influencing diastolic function that are relevant for identifying causal relationships and potential tractable targets.

12.
Circulation ; 145(16): 1205-1217, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35300523

RESUMEN

BACKGROUND: Heart failure (HF) is a highly prevalent disorder for which disease mechanisms are incompletely understood. The discovery of disease-associated proteins with causal genetic evidence provides an opportunity to identify new therapeutic targets. METHODS: We investigated the observational and causal associations of 90 cardiovascular proteins, which were measured using affinity-based proteomic assays. First, we estimated the associations of 90 cardiovascular proteins with incident heart failure by means of a fixed-effect meta-analysis of 4 population-based studies, composed of a total of 3019 participants with 732 HF events. The causal effects of HF-associated proteins were then investigated by Mendelian randomization, using cis-protein quantitative loci genetic instruments identified from genomewide association studies in more than 30 000 individuals. To improve the precision of causal estimates, we implemented an Mendelian randomization model that accounted for linkage disequilibrium between instruments and tested the robustness of causal estimates through a multiverse sensitivity analysis that included up to 120 combinations of instrument selection parameters and Mendelian randomization models per protein. The druggability of candidate proteins was surveyed, and mechanism of action and potential on-target side effects were explored with cross-trait Mendelian randomization analysis. RESULTS: Forty-four of ninety proteins were positively associated with risk of incident HF (P<6.0×10-4). Among these, 8 proteins had evidence of a causal association with HF that was robust to multiverse sensitivity analysis: higher CSF-1 (macrophage colony-stimulating factor 1), Gal-3 (galectin-3) and KIM-1 (kidney injury molecule 1) were positively associated with risk of HF, whereas higher ADM (adrenomedullin), CHI3L1 (chitinase-3-like protein 1), CTSL1 (cathepsin L1), FGF-23 (fibroblast growth factor 23), and MMP-12 (matrix metalloproteinase-12) were protective. Therapeutics targeting ADM and Gal-3 are currently under evaluation in clinical trials, and all the remaining proteins were considered druggable, except KIM-1. CONCLUSIONS: We identified 44 circulating proteins that were associated with incident HF, of which 8 showed evidence of a causal relationship and 7 were druggable, including adrenomedullin, which represents a particularly promising drug target. Our approach demonstrates a tractable roadmap for the triangulation of population genomic and proteomic data for the prioritization of therapeutic targets for complex human diseases.


Asunto(s)
Adrenomedulina , Insuficiencia Cardíaca , Adrenomedulina/genética , Estudio de Asociación del Genoma Completo , Insuficiencia Cardíaca/epidemiología , Insuficiencia Cardíaca/genética , Humanos , Análisis de la Aleatorización Mendeliana , Polimorfismo de Nucleótido Simple , Proteómica
13.
Eur J Heart Fail ; 24(3): 466-480, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34969173

RESUMEN

AIMS: Primary prevention strategies for heart failure (HF) have had limited success, possibly due to a wide range of underlying risk factors (RFs). Systematic evaluations of the prognostic burden and preventive potential across this wide range of risk factors are lacking. We aimed at estimating evidence, prevalence and co-occurrence for primary prevention and impact on prognosis of RFs for incident HF. METHODS AND RESULTS: We systematically reviewed trials and observational evidence of primary HF prevention across 92 putative aetiologic RFs for HF identified from US and European clinical practice guidelines. We identified 170 885 individuals aged ≥30 years with incident HF from 1997 to 2017, using linked primary and secondary care UK electronic health records (EHR) and rule-based phenotypes (ICD-10, Read Version 2, OPCS-4 procedure and medication codes) for each of 92 RFs. Only 10/92 factors had high quality observational evidence for association with incident HF; 7 had effective randomized controlled trial (RCT)-based interventions for HF prevention (RCT-HF), and 6 for cardiovascular disease prevention, but not HF (RCT-CVD), and the remainder had no RCT-based preventive interventions (RCT-0). We were able to map 91/92 risk factors to EHR using 5961 terms, and 88/91 factors were represented by at least one patient. In the 5 years prior to HF diagnosis, 44.3% had ≥4 RFs. By RCT evidence, the most common RCT-HF RFs were hypertension (48.5%), stable angina (34.9%), unstable angina (16.8%), myocardial infarction (15.8%), and diabetes (15.1%); RCT-CVD RFs were smoking (46.4%) and obesity (29.9%); and RCT-0 RFs were atrial arrhythmias (17.2%), cancer (16.5%), heavy alcohol intake (14.9%). Mortality at 1 year varied across all 91 factors (lowest: pregnancy-related hormonal disorder 4.2%; highest: phaeochromocytoma 73.7%). Among new HF cases, 28.5% had no RCT-HF RFs and 38.6% had no RCT-CVD RFs. 15.6% had either no RF or only RCT-0 RFs. CONCLUSION: One in six individuals with HF have no recorded RFs or RFs without trials. We provide a systematic map of primary preventive opportunities across a wide range of RFs for HF, demonstrating a high burden of co-occurrence and the need for trials tackling multiple RFs.


Asunto(s)
Insuficiencia Cardíaca , Hipertensión , Infarto del Miocardio , Insuficiencia Cardíaca/diagnóstico , Insuficiencia Cardíaca/epidemiología , Insuficiencia Cardíaca/prevención & control , Humanos , Infarto del Miocardio/complicaciones , Pronóstico , Factores de Riesgo
14.
JAMIA Open ; 4(3): ooab001, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34514354

RESUMEN

OBJECTIVE: The aim of the study was to transform a resource of linked electronic health records (EHR) to the OMOP common data model (CDM) and evaluate the process in terms of syntactic and semantic consistency and quality when implementing disease and risk factor phenotyping algorithms. MATERIALS AND METHODS: Using heart failure (HF) as an exemplar, we represented three national EHR sources (Clinical Practice Research Datalink, Hospital Episode Statistics Admitted Patient Care, Office for National Statistics) into the OMOP CDM 5.2. We compared the original and CDM HF patient population by calculating and presenting descriptive statistics of demographics, related comorbidities, and relevant clinical biomarkers. RESULTS: We identified a cohort of 502 536 patients with the incident and prevalent HF and converted 1 099 195 384 rows of data from 216 581 914 encounters across three EHR sources to the OMOP CDM. The largest percentage (65%) of unmapped events was related to medication prescriptions in primary care. The average coverage of source vocabularies was >98% with the exception of laboratory tests recorded in primary care. The raw and transformed data were similar in terms of demographics and comorbidities with the largest difference observed being 3.78% in the prevalence of chronic obstructive pulmonary disease (COPD). CONCLUSION: Our study demonstrated that the OMOP CDM can successfully be applied to convert EHR linked across multiple healthcare settings and represent phenotyping algorithms spanning multiple sources. Similar to previous research, challenges mapping primary care prescriptions and laboratory measurements still persist and require further work. The use of OMOP CDM in national UK EHR is a valuable research tool that can enable large-scale reproducible observational research.

15.
Lancet Diabetes Endocrinol ; 9(10): 681-694, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34481555

RESUMEN

BACKGROUND: Targeted obesity prevention policies would benefit from the identification of population groups with the highest risk of weight gain. The relative importance of adult age, sex, ethnicity, geographical region, and degree of social deprivation on weight gain is not known. We aimed to identify high-risk groups for changes in weight and BMI using electronic health records (EHR). METHODS: In this longitudinal, population-based cohort study we used linked EHR data from 400 primary care practices (via the Clinical Practice Research Datalink) in England, accessed via the CALIBER programme. Eligible participants were aged 18-74 years, were registered at a general practice clinic, and had BMI and weight measurements recorded between Jan 1, 1998, and June 30, 2016, during the period when they had eligible linked data with at least 1 year of follow-up time. We calculated longitudinal changes in BMI over 1, 5, and 10 years, and investigated the absolute risk and odds ratios (ORs) of transitioning between BMI categories (underweight, normal weight, overweight, obesity class 1 and 2, and severe obesity [class 3]), as defined by WHO. The associations of demographic factors with BMI transitions were estimated by use of logistic regression analysis, adjusting for baseline BMI, family history of cardiovascular disease, use of diuretics, and prevalent chronic conditions. FINDINGS: We included 2 092 260 eligible individuals with more than 9 million BMI measurements in our study. Young adult age was the strongest risk factor for weight gain at 1, 5, and 10 years of follow-up. Compared with the oldest age group (65-74 years), adults in the youngest age group (18-24 years) had the highest OR (4·22 [95% CI 3·86-4·62]) and greatest absolute risk (37% vs 24%) of transitioning from normal weight to overweight or obesity at 10 years. Likewise, adults in the youngest age group with overweight or obesity at baseline were also at highest risk to transition to a higher BMI category; OR 4·60 (4·06-5·22) and absolute risk (42% vs 18%) of transitioning from overweight to class 1 and 2 obesity, and OR 5·87 (5·23-6·59) and absolute risk (22% vs 5%) of transitioning from class 1 and 2 obesity to class 3 obesity. Other demographic factors were consistently less strongly associated with these transitions; for example, the OR of transitioning from normal weight to overweight or obesity in people living in the most socially deprived versus least deprived areas was 1·23 (1·18-1·27), for men versus women was 1·12 (1·08-1·16), and for Black individuals versus White individuals was 1·13 (1·04-1·24). We provide an open access online risk calculator, and present high-resolution obesity risk charts over a 1-year, 5-year, and 10-year follow-up period. INTERPRETATION: A radical shift in policy is required to focus on individuals at the highest risk of weight gain (ie, young adults aged 18-24 years) for individual-level and population-level prevention of obesity and its long-term consequences for health and health care. FUNDING: The British Hearth Foundation, Health Data Research UK, the UK Medical Research Council, and the National Institute for Health Research.


Asunto(s)
Registros Electrónicos de Salud , Sobrepeso , Adolescente , Adulto , Anciano , Índice de Masa Corporal , Niño , Preescolar , Estudios de Cohortes , Inglaterra/epidemiología , Femenino , Humanos , Lactante , Masculino , Sobrepeso/epidemiología , Factores de Riesgo , Adulto Joven
16.
ESC Heart Fail ; 8(6): 5531-5541, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34480422

RESUMEN

AIMS: The HERMES (HEart failure Molecular Epidemiology for Therapeutic targetS) consortium aims to identify the genomic and molecular basis of heart failure. METHODS AND RESULTS: The consortium currently includes 51 studies from 11 countries, including 68 157 heart failure cases and 949 888 controls, with data on heart failure events and prognosis. All studies collected biological samples and performed genome-wide genotyping of common genetic variants. The enrolment of subjects into participating studies ranged from 1948 to the present day, and the median follow-up following heart failure diagnosis ranged from 2 to 116 months. Forty-nine of 51 individual studies enrolled participants of both sexes; in these studies, participants with heart failure were predominantly male (34-90%). The mean age at diagnosis or ascertainment across all studies ranged from 54 to 84 years. Based on the aggregate sample, we estimated 80% power to genetic variant associations with risk of heart failure with an odds ratio of ≥1.10 for common variants (allele frequency ≥ 0.05) and ≥1.20 for low-frequency variants (allele frequency 0.01-0.05) at P < 5 × 10-8 under an additive genetic model. CONCLUSIONS: HERMES is a global collaboration aiming to (i) identify the genetic determinants of heart failure; (ii) generate insights into the causal pathways leading to heart failure and enable genetic approaches to target prioritization; and (iii) develop genomic tools for disease stratification and risk prediction.


Asunto(s)
Estudio de Asociación del Genoma Completo , Insuficiencia Cardíaca , Anciano , Anciano de 80 o más Años , Femenino , Genómica , Insuficiencia Cardíaca/genética , Humanos , Masculino , Persona de Mediana Edad , Pronóstico
17.
Epidemiology ; 32(5): 744-755, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34348396

RESUMEN

BACKGROUND: Cross-sectional measures of body mass index (BMI) are associated with cardiovascular disease (CVD) incidence, but less is known about whether weight change affects the risk of CVD. METHODS: We estimated the effect of 2-y weight change interventions on 7-y risk of CVD (CVD death, myocardial infarction, stroke, hospitalization from coronary heart disease, and heart failure) by emulating hypothetical interventions using electronic health records. We identified 138,567 individuals with 45-69 years of age without chronic disease in England from 1998 to 2016. We performed pooled logistic regression, using inverse-probability weighting to adjust for baseline and time-varying confounders. We categorized each individual into a weight loss, maintenance, or gain group. RESULTS: Among those of normal weight, both weight loss [risk difference (RD) vs. weight maintenance = 1.5% (0.3% to 3.0%)] and gain [RD = 1.3% (0.5% to 2.2%)] were associated with increased risk for CVD compared with weight maintenance. Among overweight individuals, we observed moderately higher risk of CVD in both the weight loss [RD = 0.7% (-0.2% to 1.7%)] and the weight gain group [RD = 0.7% (-0.1% to 1.7%)], compared with maintenance. In the obese, those losing weight showed lower risk of coronary heart disease [RD = -1.4% (-2.4% to -0.6%)] but not of stroke. When we assumed that chronic disease occurred 1-3 years before the recorded date, estimates for weight loss and gain were attenuated among overweight individuals; estimates for loss were lower among obese individuals. CONCLUSION: Among individuals with obesity, the weight-loss group had a lower risk of coronary heart disease but not of stroke. Weight gain was associated with increased risk of CVD across BMI groups. See video abstract at, http://links.lww.com/EDE/B838.


Asunto(s)
Enfermedades Cardiovasculares , Índice de Masa Corporal , Enfermedades Cardiovasculares/epidemiología , Estudios Transversales , Registros Electrónicos de Salud , Humanos , Sobrepeso/epidemiología , Factores de Riesgo
18.
Diabetes Care ; 44(7): 1699-1705, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34088700

RESUMEN

OBJECTIVE: The aim of this study was to use Mendelian randomization (MR) techniques to estimate the causal relationships between genetic liability to type 2 diabetes (T2D), glycemic traits, and risk of heart failure (HF). RESEARCH DESIGN AND METHODS: Summary-level data were obtained from genome-wide association studies of T2D, insulin resistance (IR), glycated hemoglobin, fasting insulin and glucose, and HF. MR was conducted using the inverse-variance weighted method. Sensitivity analyses included the MR-Egger method, weighted median and mode methods, and multivariable MR conditioning on potential mediators. RESULTS: Genetic liability to T2D was causally related to higher risk of HF (odds ratio [OR] 1.13 per 1-log unit higher risk of T2D; 95% CI 1.11-1.14; P < 0.001); however, sensitivity analysis revealed evidence of directional pleiotropy. The relationship between T2D and HF was attenuated when adjusted for coronary disease, BMI, LDL cholesterol, and blood pressure in multivariable MR. Genetically instrumented higher IR was associated with higher risk of HF (OR 1.19 per 1-log unit higher risk of IR; 95% CI 1.00-1.41; P = 0.041). There were no notable associations identified between fasting insulin, glucose, or glycated hemoglobin and risk of HF. Genetic liability to HF was causally linked to higher risk of T2D (OR 1.49; 95% CI 1.01-2.19; P = 0.042), although again with evidence of pleiotropy. CONCLUSIONS: These findings suggest a possible causal role of T2D and IR in HF etiology, although the presence of both bidirectional effects and directional pleiotropy highlights potential sources of bias that must be considered.


Asunto(s)
Diabetes Mellitus Tipo 2 , Insuficiencia Cardíaca , Diabetes Mellitus Tipo 2/epidemiología , Diabetes Mellitus Tipo 2/genética , Estudio de Asociación del Genoma Completo , Insuficiencia Cardíaca/etiología , Insuficiencia Cardíaca/genética , Humanos , Análisis de la Aleatorización Mendeliana , Polimorfismo de Nucleótido Simple , Factores de Riesgo
19.
Circulation ; 144(1): 7-19, 2021 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-33947203

RESUMEN

BACKGROUND: Each of the cardiomyopathies, classically categorized as hypertrophic cardiomyopathy, dilated cardiomyopathy (DCM), and arrhythmogenic right ventricular cardiomyopathy, has a signature genetic theme. Hypertrophic cardiomyopathy and arrhythmogenic right ventricular cardiomyopathy are largely understood as genetic diseases of sarcomere or desmosome proteins, respectively. In contrast, >250 genes spanning >10 gene ontologies have been implicated in DCM, representing a complex and diverse genetic architecture. To clarify this, a systematic curation of evidence to establish the relationship of genes with DCM was conducted. METHODS: An international panel with clinical and scientific expertise in DCM genetics evaluated evidence supporting monogenic relationships of genes with idiopathic DCM. The panel used the Clinical Genome Resource semiquantitative gene-disease clinical validity classification framework with modifications for DCM genetics to classify genes into categories on the basis of the strength of currently available evidence. Representation of DCM genes on clinically available genetic testing panels was evaluated. RESULTS: Fifty-one genes with human genetic evidence were curated. Twelve genes (23%) from 8 gene ontologies were classified as having definitive (BAG3, DES, FLNC, LMNA, MYH7, PLN, RBM20, SCN5A, TNNC1, TNNT2, TTN) or strong (DSP) evidence. Seven genes (14%; ACTC1, ACTN2, JPH2, NEXN, TNNI3, TPM1, VCL) including 2 additional ontologies were classified as moderate evidence; these genes are likely to emerge as strong or definitive with additional evidence. Of these 19 genes, 6 were similarly classified for hypertrophic cardiomyopathy and 3 for arrhythmogenic right ventricular cardiomyopathy. Of the remaining 32 genes (63%), 25 (49%) had limited evidence, 4 (8%) were disputed, 2 (4%) had no disease relationship, and 1 (2%) was supported by animal model data only. Of the 16 evaluated clinical genetic testing panels, most definitive genes were included, but panels also included numerous genes with minimal human evidence. CONCLUSIONS: In the curation of 51 genes, 19 had high evidence (12 definitive/strong, 7 moderate). It is notable that these 19 genes explain only a minority of cases, leaving the remainder of DCM genetic architecture incompletely addressed. Clinical genetic testing panels include most high-evidence genes; however, genes lacking robust evidence are also commonly included. We recommend that high-evidence DCM genes be used for clinical practice and that caution be exercised in the interpretation of variants in variable-evidence DCM genes.


Asunto(s)
Cardiomiopatía Dilatada/diagnóstico , Cardiomiopatía Dilatada/genética , Medicina Basada en la Evidencia/métodos , Testimonio de Experto/métodos , Predisposición Genética a la Enfermedad/genética , Pruebas Genéticas/métodos , Medicina Basada en la Evidencia/normas , Testimonio de Experto/normas , Pruebas Genéticas/normas , Humanos
20.
Cochrane Database Syst Rev ; 5: CD012721, 2021 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-34022072

RESUMEN

BACKGROUND: Beta-blockers and inhibitors of the renin-angiotensin-aldosterone system improve survival and reduce morbidity in people with heart failure with reduced left ventricular ejection fraction (LVEF); a review of the evidence is required to determine whether these treatments are beneficial for people with heart failure with preserved ejection fraction (HFpEF). OBJECTIVES: To assess the effects of beta-blockers, angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, angiotensin receptor neprilysin inhibitors, and mineralocorticoid receptor antagonists in people with HFpEF. SEARCH METHODS: We updated searches of CENTRAL, MEDLINE, Embase, and one clinical trial register on 14 May 2020 to identify eligible studies, with no language or date restrictions. We checked references from trial reports and review articles for additional studies.  SELECTION CRITERIA: We included randomised controlled trials with a parallel group design, enrolling adults with HFpEF, defined by LVEF greater than 40%. DATA COLLECTION AND ANALYSIS: We used standard methodological procedures expected by Cochrane. MAIN RESULTS: We included 41 randomised controlled trials (231 reports), totalling 23,492 participants across all comparisons. The risk of bias was frequently unclear and only five studies had a low risk of bias in all domains. Beta-blockers (BBs) We included 10 studies (3087 participants) investigating BBs. Five studies used a placebo comparator and in five the comparator was usual care. The mean age of participants ranged from 30 years to 81 years. A possible reduction in cardiovascular mortality was observed (risk ratio (RR) 0.78, 95% confidence interval (CI) 0.62 to 0.99; number needed to treat for an additional benefit (NNTB) 25; 1046 participants; three studies), however, the certainty of evidence was low. There may be little to no effect on all-cause mortality (RR 0.82, 95% CI 0.67 to 1.00; 1105 participants; four studies; low-certainty evidence). The effects on heart failure hospitalisation, hyperkalaemia, and quality of life remain uncertain. Mineralocorticoid receptor antagonists (MRAs) We included 13 studies (4459 participants) investigating MRA. Eight studies used a placebo comparator and in five the comparator was usual care. The mean age of participants ranged from 54.5 to 80 years. Pooled analysis indicated that MRA treatment probably reduces heart failure hospitalisation (RR 0.82, 95% CI 0.69 to 0.98; NNTB = 41; 3714 participants; three studies; moderate-certainty evidence). However, MRA treatment probably has little or no effect on all-cause mortality (RR 0.91, 95% CI 0.78 to 1.06; 4207 participants; five studies; moderate-certainty evidence) and cardiovascular mortality (RR 0.90, 95% CI 0.74 to 1.11; 4070 participants; three studies; moderate-certainty evidence). MRA treatment may have little or no effect on quality of life measures (mean difference (MD) 0.84, 95% CI -2.30 to 3.98; 511 participants; three studies; low-certainty evidence). MRA treatment was associated with a higher risk of hyperkalaemia (RR 2.11, 95% CI 1.77 to 2.51; number needed to treat for an additional harmful outcome (NNTH) = 11; 4291 participants; six studies; high-certainty evidence). Angiotensin-converting enzyme inhibitors (ACEIs) We included eight studies (2061 participants) investigating ACEIs. Three studies used a placebo comparator and in five the comparator was usual care. The mean age of participants ranged from 70 to 82 years. Pooled analyses with moderate-certainty evidence suggest that ACEI treatment likely has little or no effect on cardiovascular mortality (RR 0.93, 95% CI 0.61 to 1.42; 945 participants; two studies), all-cause mortality (RR 1.04, 95% CI 0.75 to 1.45; 1187 participants; five studies) and heart failure hospitalisation (RR 0.86, 95% CI 0.64 to 1.15; 1019 participants; three studies), and may result in little or no effect on the quality of life (MD -0.09, 95% CI -3.66 to 3.48; 154 participants; two studies; low-certainty evidence). The effects on hyperkalaemia remain uncertain. Angiotensin receptor blockers (ARBs) Eight studies (8755 participants) investigating ARBs were included. Five studies used a placebo comparator and in three the comparator was usual care. The mean age of participants ranged from 61 to 75 years. Pooled analyses with high certainty of evidence suggest that ARB treatment has little or no effect on cardiovascular mortality (RR 1.02, 95% 0.90 to 1.14; 7254 participants; three studies), all-cause mortality (RR 1.01, 95% CI 0.92 to 1.11; 7964 participants; four studies), heart failure hospitalisation (RR 0.92, 95% CI 0.83 to 1.02; 7254 participants; three studies), and quality of life (MD 0.41, 95% CI -0.86 to 1.67; 3117 participants; three studies). ARB was associated with a higher risk of hyperkalaemia (RR 1.88, 95% CI 1.07 to 3.33; 7148 participants; two studies; high-certainty evidence). Angiotensin receptor neprilysin inhibitors (ARNIs) Three studies (7702 participants) investigating ARNIs were included. Two studies used ARBs as the comparator and one used standardised medical therapy, based on participants' established treatments at enrolment. The mean age of participants ranged from 71 to 73 years. Results suggest that ARNIs may have little or no effect on cardiovascular mortality (RR 0.96, 95% CI 0.79 to 1.15; 4796 participants; one study; moderate-certainty evidence), all-cause mortality (RR 0.97, 95% CI 0.84 to 1.11; 7663 participants; three studies; high-certainty evidence), or quality of life (high-certainty evidence). However, ARNI treatment may result in a slight reduction in heart failure hospitalisation, compared to usual care (RR 0.89, 95% CI 0.80 to 1.00; 7362 participants; two studies; moderate-certainty evidence). ARNI treatment was associated with a reduced risk of hyperkalaemia compared with valsartan (RR 0.88, 95% CI 0.77 to 1.01; 5054 participants; two studies; moderate-certainty evidence). AUTHORS' CONCLUSIONS: There is evidence that MRA and ARNI treatment in HFpEF probably reduces heart failure hospitalisation but probably has little or no effect on cardiovascular mortality and quality of life. BB treatment may reduce the risk of cardiovascular mortality, however, further trials are needed. The current evidence for BBs, ACEIs, and ARBs is limited and does not support their use in HFpEF in the absence of an alternative indication. Although MRAs and ARNIs are probably effective at reducing the risk of heart failure hospitalisation, the treatment effect sizes are modest. There is a need for improved approaches to patient stratification to identify the subgroup of patients who are most likely to benefit from MRAs and ARNIs, as well as for an improved understanding of disease biology, and for new therapeutic approaches.


Asunto(s)
Antagonistas Adrenérgicos beta/uso terapéutico , Antagonistas de Receptores de Angiotensina/uso terapéutico , Inhibidores de la Enzima Convertidora de Angiotensina/uso terapéutico , Insuficiencia Cardíaca/tratamiento farmacológico , Antagonistas de Receptores de Mineralocorticoides/uso terapéutico , Sistema Renina-Angiotensina/efectos de los fármacos , Volumen Sistólico , Adulto , Anciano , Anciano de 80 o más Años , Enfermedad Crónica , Insuficiencia Cardíaca/mortalidad , Hospitalización , Humanos , Persona de Mediana Edad , Neprilisina/antagonistas & inhibidores , Calidad de Vida , Ensayos Clínicos Controlados Aleatorios como Asunto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...